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Abstract--In order  to investigate the possible states of  strain that may exist in an inhomogeneously  deformed 
body, a general  deformat ion is proposed in the form of a harmonic  coordinate t ransformation.  This deformation 
differs from those previously considered by Jaeger,  Ramsay  & Graham and Hobbs in that it is capable of  
represent ing a wide variety of  deformations;  previous efforts had inbuilt assumptions regarding the mechanism 
of deformation.  The  t ransformat ion contains adjustable terms,  all of  which have distinct geometrical significance; 
some represent  a homogeneous  deformation,  some represent  inhomogeneous  shortening,  some represent  
inhomogeneous  shear  and others  correspond to a 'pinch and swell' type of deformation.  By combining these 
terms with different degrees of emphasis  many kinds of deformation may be simulated.  In this paper two 
constraints are developed in conjunction with the general  harmonic  t ransformation;  these are the conditions for 
constant  vo lume deformat ion (both locally and generally) and the condition for zero shear  strain of  lines initially 
normal  to the distorted layer (again both locally and generally). 

INTRODUCTION 

A TRULY benevolent creator would have implanted a 
regular three-dimensional grid in rocks prior to their 
deformation that would enable us now to specify the 
strain at each point in a deformed rock (Fig. 1). How- 
ever, He chose to set a problem by providing only parts 
of that grid; for example, regular foliation surfaces that 
commonly may be assumed to have been planar and 
parallel prior to deformation and a lineation which 
commonly may be assumed to have been linear (Fig. 2). 
Clearly there is not enough information in this incom- 
plete grid to specify the strain at each point in a deformed 
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(a) 

(b) 
Fig. 1. Inhomogeneous  deformat ion of an initial system of coordinate 
axes X to become x in the  deformed state. Given the coordinate 

t ransformat ion from X tox ,  the state of  strain is defined at each point. 

body but the information that is provided does place 
constraints on the states of strain that exist. The aims of 
this paper are to explore these constraints and to discuss 
the other kinds of information that are necessary in 
order to arrive at a complete specification of strain in 
deformed rocks. 

The problem set by the hypothetical benevolent 
creator could be solved in the following manner: In the 
undeformed state (Fig. la) a system of coordinates, X, is 
erected, defined by the normal to the lineation in the 
foliation (X 1) the lineation (X 2) and the normal to the 
foliation (X3). In the deformed state (Fig. lb), another 

(a) 

l X1 X 3 

(b) 
Fi~. 2. Situation common  in rocks where the  material  lines parallel to 

t 2 3 X , X , X in the undeformed state are not necessarily recognizable in 
the deformed state. An  arbitrary system of coordinates x ~, x ~, x 3 is 
defined for the deformed state. Again if the coordinate t ransformation 
from X to x is known then the state of strain is defined at each point. 
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system of coordinates (x) is erected corresponding to the 
deformed equivalents of the material lines in the unde- 
formed state. In general this new coordinate system is 
non-orthogonal and curvilinear. 

It is then possible to define the deformation by a 
coordinate transformation 

X 1 = X 1 ( X  1, X 2, X 3) 

x 2 = x 2 ( X  1 , x  2 , x  3) 

x 3 = x 3 ( X  1 , x  2, X 3) 
(1) 

which simply says that the coordinates of a point in the 
deformed state are functions (linear or non-linear) of the 
undeformed coordinates. 

The strain at each point in the deformed state is then 
given by 

C-1 k~ __. G KL Ox k cqx 1 
O X  K O X  L (2) 

In this paper, such a general deformation is presented 
in the form of a harmonic transformation which contains 
the various elements of a general inhomogeneous defor- 
mation (bending, shearing, shortening, pinch and swell). 
These components may be assembled in different prop- 
ortions by a suitable choice of coefficients. 

We examine first the nature of this general harmonic 
transformation and use it to consider states of strain in 
two dimensions in the profile planes of folds. We then 
proceed to consider other information that might further 
constrain the states of strain in deformed rocks. This 
paper forms part of a much wider analysis of coordinate 
transformations made by Hirsinger (1976a), part of 
which has been applied to deformed fossils (Hirsinger 
1976b). The problem of gaining information from redis- 
tributed lineations is not considered here but will form 
the subject of a subsequent paper. 

where G KL is the metric tensor for the X K coordinate 
system; since this system is Cartesian, G KL = t5 KL, the 
Kronecker delta. The Finger tensor, c -1, is chosen here 
because it gives the strain relative to the deformed state; 
its proper numbers are the squares of the principal 
stretches (see Truesdell & Toupin 1960, Eringen 1962). 

As indicated, in real rocks an incomplete marker 
system is provided but a coordinate system can be 
erected in the deformed state, one possibility being as 
indicated in Fig. 2. The deformation is then defined by a 
coordinate transformation which has the general form of 
equation (1) and the strain at each point is defined by (2). 
However, the problem now is to discover the nature of 
the coordinate transformation (1) that describes the 
deformation. This problem has been tackled in the past 
by Jaeger (1969), Ramsay & Graham (1970) and Hobbs 
(1971). These authors proposed various kinds of coordi- 
nate transformations and proceeded to calculate strain 
distributions. However, the transformations used had 
inbuilt assumptions regarding the mode of deformation. 
Jaeger (1969) discussed both similar and concentric folds 
but the transformations used had the inherent assump- 
tions that similar folds develop by shearing parallel to 
the axial surface and that concentric folds involve bend- 
ing. The Ramsay & Graham (1970) transformations lead 
to similar folds and again presuppose shearing parallel to 
the axial surface as the basic mode of development. 
Hobbs (1971) considered Class 1, 2 and 3 folds of 
Ramsay (1967) but again prescribed bending (or bending 
plus flattening) as important parts of the development of 
Class 1 folds, and shearing with homogeneous and 
inhomogeneous shortening, respectively, as important 
mechanisms involved in the development of Class 2 and 
3 folds. 

Although such assumptions regarding folding 
mechanisms may be justified in some instances, it is 
clearly desirable to define the deformation as far as 
possible by means of a coordinate transformation that 
does not have a specific folding mechanism inherently 
built in. 

A GENERAL HARMONIC 
TRANSFORMATION APPLIED TO FOLDS 

In this section we consider a general two-dimensional 
transformation aimed at specifying the strain within 
profile planes of folds. We consider only Cartesian 
reference frames in the strained and unstrained states 
(Fig. 3) although, as has already been indicated, the 
approach may readily be extended to non-Cartesian 
frames (see also Hobbs 1971). 

The coordinate axes, X K, in the undeformed state are 
taken normal and parallel to the surface to be folded 
(Fig. 3) and the coordinate axes, x k, in the deformed 
state are taken parallel and normal to the axial plane. 

X 1 

I " I 
(a) 

X 1 

(b) 
Fig. 3. Coordinate systems adopted in this paper. X 1 in the undeformed 
state is normal to the layering and X 2 is parallel. In the deformed state 
x I is parallel to the axial plane and normal to the fold axis; x 2 is normal 

to the axial plane. Both X and x are taken as Cartesian systems. 
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The transformation expressing the deformation is 

X i = aiK XK + ~ ~ {Aimn cos (mwl  X I )  cos(nw2 s 2 )  
m n 

+ Bimn cos (mwl  s l )  sin(nw2X 2) 
+ Cim. s in(mwlX 1) cos(nw2 X2) 
+ Di,~. s in(mwlX I) sin(nw2X2)} (3) 

where wK = 2~/AK, )tk being the fundamental wave- 
length of the inhomogeneous deformation in the X K 
direction and aiK , Aimn, Bimn, Cimn, Dim n are various 
coefficients, the significance of which is considered 
below. 

J 
(a) 

Redundant coefficients 

The transformation (3) is summed over all terms from 
m = 0, n = 0 onwards. As a result, sin(0) appears in 
some terms making the corresponding coefficients 
redundant.  These are Bimo, Cion, Dimo and Dio n. 

Number of  terms 

If m is summed to M and n is summed to N then the 
number  of non-redundant  terms, T, is given by 

T = 4 (the aiK terms) 
+ 2 (A100 and A200 terms) 
+ 4M (Aim0,  Camo, A2mo, C2mo terms) 
+ 4N (Alon, Blo., A20., B20. terms) 
+ 8MN (Aimn, Bimn, Cimn, Dim n terms for 

m ~ O , n ¢ O , i = l , 2 ) .  (4) 

Thus, for M = 6, N = 4, there are 238 non-redundant  
terms. In such a case there are six non-zero harmonics 
along the X ~ axis and four non-zero harmonics along the 
X 2 axis; the series is said to be of order  6 x 4. 

(b) 

Fig. 4. Homogeneous transformations, in which all the harmonic terms 
are zero. Values of aiK shown: (a) all = 1, a2z = 1, al2 = --0.3, 
a21 = 0.6; (b) all = 0.5, a22 = 2, al2 = 0, a21 = 0. Undeformed grid 
elements of the coordinate systems X and x superimposed in the 
undeformed and deformed states, respectively are plotted at the top 

left corner of each diagram. 

Inhomogeneous shear in one direction, A/0n, B/0n, A2m0, 
C2m0 terms 

If Aa0., Bt0. are taken as non-zero with A 2 m 0 ,  C2rnO 
equal to zero then the general transformation becomes 

Homogeneous deformation--the aiK terms 

Setting all coefficients equal to zero except for the aiK 
terms gives the transformation 

x I = a l I X  1 +a~2 X2 
= x 2 .  (5) 

x 2 az1X 1 + a22 

This represents a homogeneous deformation in which 
all , a22 are shortening or extension components  and at2, 
a21 are shear components.  Figure 4(a) shows a deforma- 
tion for which all = a22 = 1 and a12 = - 0 . 3 ,  
a21 = +0.6. Figure 4(b) shows a pure shear deformation 
with at1 = 0.5, a22 = 2.0 and at2 = a21 = 0. 

Rigid-body translation, the mio o terms 

Substituting m = 0, n = 0 into the general transfor- 
mation (3) results in zero for all terms except the aiK and 
Al00, A200. Thus, a constant is added to the homogeneous 
transformation (5). Hence,  the Ai00 terms represent a 
rigid transport of the deforming body. Since the deriva- 
tives of these terms are zero they do not enter  into 
expression (2) for the Finger tensor and hence need not 
be considered in any analysis of strain. 

x t = alIX 1 + al2X 2 
N 

+ ~ {A10. cos(w2 nX2) + Blo. sin(w2nX2)} (6) 
n=l 

X 2 = a2t X1 + a22 x 2 .  

Such a transformation represents an inhomogeneous 
simple shear along the xt-axis. Similar results hold for 
A10 n - Bl0 n = 0 and Azm 0 and Czmo non-zero, which 
represents an inhomogeneous simple shear along the 
xZ-axis. In both cases a homogeneous deformation is 
superimposed on the simple shear. Examples are shown 
in Fig. 5. When aiK assumes the value of the Kronecker  
delta, 6/K, expression (6) reduces to the type of series 
used for example for layer shape analysis by Hudleston 
(1973). 

Since the inhomogeneity expressed by (6) is a function 
of one variable only, the resulting pattern of deformation 
is repeated identically parallel to one set of lines. Folds 
will therefore be similar in style. Three examples with 
varying degrees of overall shear are shown in Fig. 6. For 
Fig. 6(a), aiK = 6iK and the other coefficients are 
At0i = - 0 . 5 ,  A102 = 0.1, B101 = - 1 . 3 ,  B I 0  2 : 0.3, 
Bl03 = -0 .2 .  Figure 6(b) represents the same transfor- 
mation but with a pure shear component  superimposed, 
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+ PO .t 
(b) 

Fig. 5. Single harmonic transformations plotted in the range 0 s X1 < 2?r and 0 c X2 C 27r. Harmonic values used are: 

(a) A,OI = 0.75, (b) &OI = 0.75, (c) C,,, = 0.75 and (d) &to = 0.75 with all other harmonics at zero, and aiK = 6,,. 

lb) 

Fig. 6. An inhomogeneous simple shear transformation, (a) plotted without overall homogeneous shear, (b) with a pure 
shear of a II = 1.33, ~22 = 0.75, and (c) with this plus an overall simple shear given by aI2 = 0.4 and azI = -0.2. The areas 
plotted he in the range (0 S X1 G 2rr, 0 < X2 s 4~). Inhomogeneous components are given by the harmonics: 

Alo, = -0.5,A102 = 0.1, BIo, = -1.3, BtW = 0.3andB,,,, = -0.2. 
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Fig. 7. Individual transformations showing the effects of the four possible first-order axially inhomogeneous pure shear 
harmonics, plotted in the range (0 ~ X ' ~ 2rr, 0 <~ X 2 ~< 2rr), with aiK = 6iK. All harmonics are zero except for: 

(a) A2m = 0.75, (b) Aim = 0.75, (c) B201 = 0.75 and (d) Cll0 = 0.75. 
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defined by all = 1.33, a22 = 0.75, a12 = a21 = 0. Figure 
6(c) illustrates the effect of adding shear components,  
a12 --- 0.4, a21 -- - 0 . 2 ,  in addition to the pure shear of 
Fig. 6(b). 

Inhomogeneous pure shear parallel to coordinate axes, 
Almo,  Clmo, A20n, B20 n t e r m s  

The remaining terms involving coefficients with some 
zero in their specification, result in fluctuations in the 
position of one set of coordinates relative to the corre- 
sponding initial coordinates and thus lead to an 
inhomogeneous  pure shear. Considering, for instance, 
the X 2 axis only; then an appropriate transformation 
would be one having A2o n and B2o n non-zero and 
Al,,0 = C1,,0 = 0giving 

X 1 = a l l X  1 + a12 X 2  
X 2 = a21 X 1  -Jr- a22 X 2  (7) 

N 
+ Z {A20, cos(wznX 2) + B20, sin(w2nX2)}. 

n = l  

Layers defined as planes of X I = constant would show 
no folding, the effect being a change in relative spacing 
between these planes. Figure 7 shows some examples. 
Notice the inhomogeneous  volume change that accom- 
panies deformations of this type. 

Pinch and swell deformations, the mixed terms, Aimm, 
Bimn, Cimn, Dim. with m ~ O, n ~ 0 

Harmonics for which both m and n are non-zero give 
terms which are products of sines and cosines of two 
coordinates, and thus cause a more general form of 
strain inhomogeneity.  This is a 'pinch and swell' type of 
deformation (Figs. 8 and 9), caused by inhomogeneous 
simple shear along one axis by an amount varying with 
respect to both axes. Alternatively, one could consider 
these harmonics as giving a 'differential flattening' as 
used by Ramsay (1962), albeit without the attendant 
fold formation which could maintain an isochoric pat- 
tern. 

The addition of harmonics giving such variations both 
along X 1 and X 2 allows reduction of the dilations inher- 
ent in these terms, giving areas of deformation reminis- 
cent of typical internal boudinage patterns (see Cobbold 
et al. 1971). Figure 10(a), for example, shows the 
transformation produced by having A111 = 0.5 and 
A211 = 0 . 5 .  

In considering the relationships of these harmonics to 
real deformations it must be remembered that the har- 
monics only give the inhomogeneous  component  of 
deformations and will not be realistic unless an overall 
homogeneous  deformation is applied. Thus the pinch 
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F ig .  8. ' P i n c h - a n d - s w e l l '  t r a n s f o r m a t i o n s  w i th  s ingle  first  o r d e r  m i x e d  h a r m o n i c s  o n  x 1 o n l y ,  p l o t t e d  o v e r  a ful l  w a v e l e n g t h  
in b o t h  X 1 a n d  X ~ ( 0 ~ < X l ~  < 2~-, 0 ~ X 2 ~ < 2 ~ r ) .  T h e  h a r m o n i c  v a l u e s  f o r  i nd iv idua l  d i a g r a m s  are :  

(a)  A m  = 0 .75 ,  (b)  B n l  = 0 .75 ,  (c) Cll  1 = 0 .75 a n d  (d)  Dl l  1 = 0 .75 wi th  all  o t h e r  h a r m o n i c s  a t  z e r o ,  a n d  aiK = fSiK. 

and swell of Fig. 10(a) does not resemble boudinage 
until values of aiK other than the Kronecker delta are 
applied. In Fig. 10(b) the values of all = 0.7071, 
a22 = 1.414 have been applied in addition to the har- 
monics used for Fig. 10(a), such that virtually all the 
strain in the x 2 direction (vertical) becomes a shortening. 

It is by the application of this form of harmonic on top 
of the harmonics used to achieve fold forms due to 
inhomogeneous simple and pure shears that deforma- 
tion patterns similar to those described as being due to 
'buckling' can be produced. Thus if the transformation 
(6) for folding by inhomogeneous simple shear is com- 
bined with a component of deformation given by the 
harmonic A2u then alternating portions of the 'layering' 
become extended and shortened. In Fig. 11 such a result 
has been plotted for a limited range ofX 1 only, the result 
being a folded layer with a strain pattern similar to that 
commonly related to buckling in geological structures 
(see for example the wax models of Cobbold 1975, fig. 
11). 

INTRODUCTION OF OTHER ASSUMPTIONS TO 
FURTHER CONSTRAIN STATES OF STRAIN 

Although the transformation given by equation (3) is 

quite general and in principle is capable of generating all 
states of strain in simply folded rocks, not enough infor- 
mation is presented by just the geometry of the folded 
layer to specify the various coefficients in (3) uniquely. 
In real folds other information may be available, such as 
the state of strain at one or more places around the fold 
as revealed by deformed fossils, or it may be possible to 
assume that the orientation of one principal plane of 
strain is parallel to the trace of cleavage on the profile 
plane. All information of this type may be used to 
further constrain the range of strain states that are 
possible. Other assumptions may be of a more general 
nature; thus the deformation might be assumed to be 
isochoric (constant volume) or at least the dilational 
pattern might be assumed to be simple and to be 
restricted to a specific range of values. Another form of 
assumption may involve the type of strain that specific 
lines undergo. Thus, it may be reasonable to assume that 
the strain distribution, in layers folded by buckling, is 
such that lines originally straight and perpendicular to 
the layered boundary, remain normal to the layer after 
folding. This condition is referred to below as shear 
strain neutrality. 

Clearly other assumptions are possible, but in this 
section only the two conditions of isochorism and of 
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Fig. 9. As for Fig. 8, but illustrating mixed harmonics on x 2 instead 
of on x 1. Non-zero harmonics: (a) A211 = 0.75, (b) Bzu = 0.75, 

(c) C2H = 0.75 and (d) D211 = 0.75. 

shear strain neutrality are considered, in conjunction 
with the multiple harmonic t ransformation given by (3). 
The resulting expressions are readily quantifiable for 
specific choices of inhomogeneity.  The  analytical pro- 
cess by which transformations are generated to match 
the selected restrictions has been incorporated into a 
computer  program,  such that the derivation of the suit- 
able equations becomes automatic,  upon the user 's  
selection of a starting point for the form of the transfor- 
mation.  Armed  with this analytical aid, the effects of  
mixing various harmonic types, on the restrictions 
defined, can be explored. 

In what follows, partial differential equations repre- 
senting the restrictions of isochorism and of angular 
shear strain neutrality are derived, in terms of the deriva- 
tives of a general t ransformation.  Specific solutions of 

. \ - \ . \ . \ ,  , / . / . I .  I .  
+ I - \ .~,V,l'[" I - I + 

Fig. 10. Transformations produced by superposition of the harmonics 
Aul =0.5 and A2u = 0.5, in the range (-~-~<X ~<37r, 
- i t  <~ X 1 ~< 3zr). (a) has aiK = 6iK (above), whilst (b) has an overall 

pure shear given by a u = 0.7071, a22 = 1.414 (below). 

these are then developed,  and examples presented 
graphically. 

Isochorism. For a general t ransformation of the form 
of equation (3), the ratio, J,  of elemental  volumes in the 
deformed and undeformed states is given by the deter- 
minant  (see Hobbs  1971, p. 335) 

OX 1 

OX ~ j =  
Ox 2 

S 2  . 

OX21 

(8) 

For zero dilation, or for ischorism to exist between 
Cartesian coordinate systems X ~: and x ~, (8) becomes 

c3xl Oxl I 
J =  OX~ OX2 = 1 .  (9) 

Ox 2 Ox 2 
O X  1 O X  2 

Angular shear strain neutrality. This condition implies 
that  there is no change in angle between two orthogonal  
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l + 

Fig. 11. A po r t i on  of  a t r a n s f o r m a t i o n  in which  e l e m e n t s  of  a ' buck l ing '  
type  of  d e f o r m a t i o n  are  r e p r e s e n t e d .  P a r a m e t e r s  in the  t r a n s f o r m a t i o n  
are:  Bl01 = Bll  1 = 1.0, Cl20 = - 0 . 2 5 ,  B202 = - 0 . 1 5 ,  C2n = - 0 . 6 ,  
a n = 1.414, a22 = 0.7071,  w 1 = 1.0 and  w 2 = 0.75. The  a rea  of the  
t r a n s f o r m a t i o n  shown  l ies in the  r anges  ( -0 .2~"  <~X 1 ~< 0.2~') and  

(0 ~< X 2 ~< 2.0rr). 

lines, undergoing the deformation being considered. In 
this section the condition will be applied to the X 1 and 
X 2 axial directions of a Cartesian coordinate system X. 

The change in angle, F, between originally orthogonal 
infinitesimal vectors dX1 and dX2, is given by (see 
Eringen 1962, p. 22) 

sin F(N1 , N 2 )  = CKL N~ N L / (A(N,) A(N2)) (10) 

where N1 and N2 are unit vectors parallel to dX~ and dX2, 
CKL is Green 's  deformation tensor and A(N0 is the stretch 
of Ni. CKL is given for Cartesian coordinate systems by 

Ox k Ox t 
CKL ~ ~kl OX K OX L" (11) 

For  no change in angle, sin F(NI, Nz) must be zero. 
Hence this becomes the condition that 

K L 
CKLN 1 N 2  = 0. (12) 

Now, since N1 and N2 are unit vectors parallel to 
Cartesian coordinate axes, 

N~ = 1, N21 = N ~ =  0, N 2 =  1. (13) 

Substitution of (11) into (12) gives 

~xk ~xl K L 
6kl 6 X  K ~ X  L NIN2 = 0: (14) 

Substitution of the values of N from equation (13) gives, 
after appropriate cross-multiplication, the condition for 
angular shear strain neutrality along X 1 and X 2 as 

~X I OX 1 OX 2 0 X  2 

oX-- q oX--- ~ + oX---- i oX------ 2 = O. (15) 

Method of  solution of  these restrictions 

Incorporation of the derivatives of the general har- 
monic transformation (3) into an equation such as (9) or 

(15) defining strain restrictions, gives an expression 
which is the sum of terms that are products of the 
homogeneous strain parameters aiK, the fundamental 
wavelength parameters w K, the various harmonics Aimn, 
Bimn, etc., and geometrical identities in X K representing 
the products of terms such as sin (mwlX  1) cos (nw2 X2) 
and cos (mwx g l )  cos (nw2X2). 

For a general solution, this expression must be valid 
for all values of X K. In addition, a limited solution, such 
that the restrictions are satisfied along particular surfaces 
only, may be required. In such cases the solution is 
obtained whenever the expression is valid for the values 
of X K conforming to such surfaces. The simplest case of 
this would be solutions for X K = constant surfaces. For 
example, a transformation with no dilation in the hinge 
plane might be sought. For transformations in which 
folding results with axial planes given by X 2 = constant, 
hinge planes might be found at X 2 = nTr, n being an 
integer. Appropriate  solutions would thus be ones in 
which (9) holds for X 2 values that are integer multiples 
ofzr. 

For an expression such as (15) to hold for all values of 
X K, the simplest solution is found when the coefficients 
of the various geometric identities occurring as separate 
terms sum to zero, for each of these identities. When this 
occurs, parameter  values have been found which are 
such that X K values are arbitrary. 

Similarly, if a limited solution is sought, then, in the 
case of X K = constant, substitution of the appropriate 
X K value into the geometric identities yields simpler 
geometric terms. For a solution, the sums of the indi- 
vidual groups of coefficients on these must sum to zero. 

The most straight-forward approach is thus to take the 
general expression resulting from substitution of the 
appropriate derivatives into the restrictive equation, 
and rewrite it by grouping all the similar geometric 
identities individually. These geometric identity terms 
shall be called variable terms from here on. Each of the 
coefficient groups on particular terms now represents an 
equation in what shall now be called the parameters. 
These include the constant coefficients, the fundamental 
wavelength parameters,  and the harmonic coefficients. 

The fundamental difference between the parameters 
and variable terms is that the variable terms involve X K, 
whereas the parameters are constant for a given trans- 
formation. The purpose of this exercise is to define 
groups of parameters,  and hence transformations, which 
satisfy the restrictions imposed for the appropriate 
values of X K. 

Were the parameter  groups simple, it might be poss- 
ible to solve the coefficient groups as simultaneous 
equations. In fact, this is not generally possible. The 
problem is that we wish to start off with some harmonic 
terms specified, to give a general shape such as a fold, 
and then to find what additional harmonics must be 
included to produce an appropriately restricted com- 
plementary inhomogeneity. The most obvious case 
would be the imposition of a pinch and swell across the 
axial planes of similar folds, to produce a 'buckling' 
pattern. The parameters used do not fall into any par- 
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ticular combination of knowns and unknowns, and con- 
siderable examination and manipulation of parameters 
between individual equations is required for solution. In 
effect, the solution is one for a group of simultaneous 
equations in which individual equations have different 
numbers of terms, and involve products of parameters as 
well as linear terms. 

The derivation and solution process is, despite this, 
quite mechanical, and must be performed for a large 
number  of combinations of parameters to produce useful 
results. A computer  program has been written to per- 
form these tasks. Its results are used here without going 
through the intermediate steps of derivation. Details of 
the program are incorporated in Hirsinger (1976a). 

D •  (a) 

X2=O X2 =Z~TT 

Constant coefficients only 

With all harmonic terms zero, the restriction for 
isochorism becomes 

a11aE2 --  a12a21 = 1 (16) 

and that for shear strain neutrality becomes 

alia12 + azla22 = 0.  (17) 

First-order cosine curve 

~ X  1 -- X I, 2 Tr 

s 0 

With a cosine curve, the presence of a pure shear 
component  al~ alone is restrictive on the existence of 
shear strain neutrality; it is unaffected by the existence 
of non-zero simple shear components.  A shear strain 
neutral surface along X 1 = constant is thus impossible 
unless additional inhomogeneity is present. This is pre- 
dictable, as without it the transformation is compatible 
with the model of similar folding. There  will always be a 
shear strain neutral surface along X z = 0. This simply 
represents the 'hinge' area of the cosine curve. 

For isochorism, only the pure shear components  figure 
in the homogeneous restrictions. Isochorism is de- 
stroyed, on the other hand, if any non-zero component of 
simple shear, a21, is introduced. Selection of ate , for any 
all and a22 and zero aEl, is arbitrary. 

This is the crux of the problem of defining an isochoric 
buckling deformation using the harmonic series transfor- 
mation (3). On the one hand, isochorism is readily 
attained using the similar fold transformation, whilst for 
the buckling effect, reflected in this case by attempting 
to get a neutral surface parallel to layering at some point, 
additional inhomogeneity must be present. Cases of 
inhomogeneity which might serve the purpose are now 
examined. 

Cosine curve with a single mixed harmonic 

The variation to produce shear strain neutrality will 
have to counteract the shear along x 1, and thus must 
represent a variation in x 2. Restrictions have been intro- 
duced resulting from the application of neutrality and 

Fig. 12. Transformations with shear strain neutral surfaces along (a) 
X 2 =  0 and (b) X l =  0, plotted in the range (0 ~< X I ~  < 2ir, 
0 ~< X 2 ~< 4~'), and defined by: (a) Al0 ! = 1, B211 = -0 .5 ,  aiK = S/K; 

(b) Al01 = 0.5, A211 = - 0 . 6 6 6 6 ,  all = a22 = 1, ale = - 0 . 7 5  and 
a21 = 0.75. 

isochorism conditions to combinations of the basic 
cosine curve A101 with pinch-and-swell type harmonics 
A211, BEll ,  C211 and DEl l ,  in turn. 

Neither general isochorism (that is, isochorism at each 
point) nor general angular shear strain neutrality occurs 
for non-zero selection of these harmonics. 

Shear strain neutral surfaces will exist along planes 
of X E=  0 for arbitrary combinations of 3101 with 
BEll o r  D21I,  but along the more desirable case of 
X 1 =  0 surfaces, only for specific cases, such that 

a l i  3101 = aEl A211. 
Figure 12(a) illustrates neutral surfaces along X 2 = 0, 

in a transformation with unitary At0l and BEl~ = -0 .5 .  
Figure 12(b) shows a transformation with A101 = 0 . 5 ,  

A211 = -0 .6666,  a neutral surface along X 1 = 0 being 
achieved by solution of the special case mentioned 
above, the homogeneous strain parameters used being 
a I - -  1, ale = -0 .75 ,  ael = 0.75 and ace = 1. Note that 
the fold effect of 3101 has been reduced by the effect of 
AEll with the simple shear terms, to an internal 
boudinage pattern. 

Isochorism will also exist along specific layers, of 
X 2 = constant, for arbitrary choice of values of the 
harmonics, and also, for some specific cases (for example 
for a11A211 = aEiA101) along X 1 = 0. This is the opposite 
to the special case for neutrality along this layer, such 
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~ [ ~ }  X~=21T 

= 

Fig. 13. A t rans fo rmat ion  that  is isochoric along X 2 = nlr,  where  n is 
any integer.  The  range of  the  plot  is (0 ~< X 1 ~< 2~r, 0 ~< X 2 ~< 4~r) 
such that  these  lines are at the far fight,  the far left, and in the 'h inge '  
regions.  The  t r ans fo rmat ion  is defined by: Am1 = 1, C m = 0.5 and 

aiK = ~iK. 

that the two conditions are incompatible.  Figure 13 
shows a t ransformation having isochorism along X z = 0, 
namely one with A~m = 1, C2H = 0.5, and with 
homogeneous  strain parameters  equal to Kronecker  
delta. 

Combinations of pinch and swell only 

In the previous section combinat ion of a simple cosine 
curve with a single mixed harmonic  has been seen not to 
permit  general isochorism. By combining additional 
pinch and swell harmonics such a solution might, 
nevertheless,  eventually emerge.  In the present  section 
combinations of  various pinch and swell harmonics,  
without an overall  fold shape such as a cosine curve, are 
examined.  

The  conditions for neutrality with combinations of a 
single mixed harmonic on x I and another  on x 2 have been 
examined for various combinations of A with A, A with 
D, D with D, B with B, B with C and C with C. 

Genera l  shear strain neutrality is not possible for any 
of these cases, as the final equation in each represents a 
coefficient which is the sum of two squares, thus only 
going to zero for zero harmonics.  It also appears  that 
general isochorism is not possible either. However ,  
there are many cases of shear strain neutral and isochoric 
surfaces. A few examples  are presented here. 

For  combinations of All 1 and D211 shear strain neutral- 
ity can be obtained along lines of X 1 = 0, provided that 
w2 aH Alll  = wl az2 Din .  Figure 14(a) shows the case for 
Kronecker  delta values to aiK, unitary fundamental  
wavelength parameters ,  and All1 = D211 = 0.5. This 
t ransformation,  incidentally, is also shear strain neutral 
along lines of X 2 = 0.5 zr. 

In Fig. 14(b) a more  complex case based on the same 
restrictions is shown, in which simple shear components  
have been included. The solution is for a H =  0.75, 
a12 = 0 . 5 ,  a21 = - 0 . 5 ,  a22 = 0.75, with A l l  I being 
specified as 0.75. X ~ = 0 is to be the shear strain neutral 
surface, the solution being given by D m =  0.75. As in 
the previous case shear strain neutrality is maintained 

~[--] (al ×:.2. 

X2:'ff 

I i~=° 
X 2 -0 xZ=2rr 

1 X I =2~T 

(bl 

~ -X 1= (} 

X2=0 

Fig. 14. Solutions for angular shear strain neutrali ty on X t = nTT, 
plot ted in the range (0 ~< X l <~ 2~, 0 <~ X 2 <~ 4~-). The transforma- 
tions are: (a) A m = D211 = 0,5; aiK = 8iK and (b) A m  = D2H = 0.75; 

a H =  a22 = 0.75; a12 = 0.5 and a21 = - 0 . 5 .  

along X 2 = 0.5 7r. Note that since the components  of 
simple shear, which correspond to those for a pure 
rotation, are added to the t ransformation,  rather than 
being multiplied over  the whole, Fig. 14(b) is not simply 
a sheared version of Fig. 14(a). 

In Fig. 15 a similar exercise has been per formed for 
isochorism. The transformation in Fig. 15(a) exhibits 
isochorism along X 2 = 0.5 rr, the solution being given 
by ali = a22 = 1, a12 = a~l = 0, Alll = 0.5 and 
D211 = --0.5. The  only difference from the shear strain 
neutral case is thus in the sign of Din .  The transforma- 
tion is also isochoric for X l = 0, and neutrality occurs 
along X 1 = 0.5 ~r. 

The consideration of simple-shear terms in the 
isochoric case results in t ransformations such as, for 
example,  that illustrated in Fig. 15(b), in which isochoric 
surfaces are a l ongX 1 = 0 a n d X  2 = 0.5 ~-. The transfor- 
mation is given by all = 0.75, al2 = 0.5, a2~ = - 0 . 5 ,  
a22 = 1, A m  = 0.75 and D211 = -0 .75 .  Note  that the 
difference between this and its shear strain neutrality 
equivalent is greater  than the case without simple shear. 

An interesting case is that in which both the pinch and 
swell on X ~ and on X 2 are of the same 'harmonic type ' ,  
that is, they are all A, all B, etc. For Fig. 16(a), shear 
strain neutrality was sought along X 2 = 0, starting off 
with al2 = 0.5, all = 0.75 and a22 = 1, with A m  being 
specified as 0.5 and A2H to be the complementary  har- 
monic. It  was determined that a21 = - 0 . 3 7 5  and 
A211 = --0.25. The  result of this combination is that 
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° 

,.. X1,2 TT 

(a) 

~X2: 4Tr 

Combina t ions  o f  m i x e d  harmonics  on one axis only  

Combinat ion of two mixed harmonics,  defining pinch 
and swell on two axes, will not, according to the preced- 
ing section, give cases of  general  isochorism or general 
angular shear strain neutrality. In this section some cases 
of general isochorism will be shown to exist for combina- 
tions of two pinch and swell variations on the same axis. 

Fig. 16. Two  solutions to strain related restrictions,  based on  similar 
start ing values ofa~2 = 0.5, a2~ = 0.75, a22 = 1, A m  = 0.5, A211 as the 
u n k n o w n  complemen ta ry  harmonic .  (a) was solved for neutrali ty 
along X 2 = n~', result ing in A211 = - 0 . 2 5  and a21 = -0 .3 75 ,  whilst 
(b) was solved for  isochorism on X t = nlr ,  giving A2H = 1 and 
azl = - 0 . 5 .  The  range of bo th  plots is (0 ~< X l ~< 2~', 0 ~< X 2 ~< 47r). 

x x /~ 

/ 

\ 

\ 

~e 

/ 

Fi~g. 17. A t rans format ion  in which isochorism is achieved along 
X "  = n~" by using the harmonics  A m  and C2H. An  overall  pure  shear  
is present ,  the t rans format ion  being given by: Aum = 0.75, 
C2H = 0.25, au  = 1.333 and a22 = 0.75. It is plot ted over  the range 

( 0 ~ < X  1 ~< 2 ~ ' , 0 ~ < X  2~< 47r). 

layers of X 2 = constant remain straight, over  the entire 
t ransformation! Starting with the same values and solv- 
ing for isochorism along X t = 0 yields a21 = - 0 . 5  and 
A21] = 1, with the same remarkable  geometrical  conse- 
quence (Fig. 16b). 

Other  restrictions of shear strain neutrality and of 
isochorism have been considered with harmonic combi- 
nations of the form A with B, C with D, etc. The 
restrictions invariably involve more  and simpler equa- 
tions, reflecting the lower harmony between the geomet-  
rical identities introduced by harmonics of the form A or 
D than those of the form B or C. In general the restric- 
tions become very simple on deletion of the simple shear 
terms. The case of isochorism applied on a combination 
of A m  and C21t, can be solved by any values of  the 
harmonics for isochorism along X t = 0 when simple 
shear terms are deleted. Figure 17 shows such a transfor- 
mation,  given by all = 1.333, a22 = 0.75, Altt  = 0.75 
and C2H = 0.25. 

As with previous combinations,  general  isochorism 
and shear strain neutrality are not possible. 

0 <~ X 2 <~ 47r), the t rans format ions  being: (a) A m = 0.5, D211 = 
- 0 . 5  and aiK = giK; (b) A m = 0.75, D211 = - 0 . 7 5 ,  all = 0.75, 

a~2 = 0.5, a21 = - 0 . 5  anda22 = 1. 

\X2= 0 
pl~] ~,X'-2rr 

Xi= TT 

(b) A/~ ~ ~/~..x'=o ~ Xx2= 4 ~T (b} 1 

~ ~  ~ X '  :'ff / Xt=O 
X 2= 2/7 

\ X2= 0 

Fig. 15. Solut ions for isochoric surfaces,  (a) wi thout  and (b) with 
simple shear  terms.  I sochor ism occurs along X l =  n~r and 
X 2 = (0.5 + n)~r in both.  The  range of  the plots is (0 ~< X l ~< 27r, 
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X I =  . 

Fig. 19. A generally isochoric transformation using two mixed har- 
monics on each axis. The parameters are: AH1 = Du~ = 1.125, 
A2u = D2n = 0.5, a n = 1.5 and a22 = 0.667. Plotted in the range 

(0.2rr ~< X I ~< 1.2rr, 0 <~ X 2 ~< 4"n'). 

Fig. 18. A portion of a generally isochoric transformation generated 
using two mixed harmonics on the same axis and a homogeneous 
simple shear. The range of the plot is (0 ~< X 1 ~< ~r, 0 ~< X 2 ~ ~r), the 
origin being the point plotted lowest on the page. The transformation 

is: A2I 1 = 1, D211 = - 1, an = a12 = a22 = l and a21 = 0. 

Restrictions of shear strain neutrality and of 
isochorism have been investigated with combinations of 
the form of A2n with D2n, etc. All variations are given 
for the x 2 axis only. Obviously, a similar set of results 
would apply for variation on x 1. 

General  shear strain neutrality is excluded by all 
combinations in that a sum-of-squares term appears in 
each set of restrictive equations, as do equations with 
single terms only. 

General  isochorism is possible in the case depicted in 
Fig. 18 which is a combination of A211 with D211. A 
similar result would be expected for B211 with C2n, as 
well as for equivalent combinations on x 1. 

In Fig. 18 a solution is plotted, in which unitary values 
of a11, al2 and a22 have been used, together with opposite 
values of A211 and D211 (1 ,  and - 1 ,  respectively). Only 
half a wavelength has been plotted in either dimension. 

Combination of  all mixed harmonics 

To complete the examination of mixed harmonic 
transformations, a general combination of all possible 
first-order mixed harmonics is now presented. 

Restrictions of shear strain neutrality and of 
isochorism have been examined with combinations of all 
harmonics with indices il 1, without simple shear terms 
a12 and a21. These restrictions incorporate the individual 
groups of restrictions on non-simple-shear mixed har- 
monic transformations presented in preceding sections, 
to which they can be reduced by deletion of appropriate 
harmonics. 

General  neutrality is not, of course, to be expected. 

Shear strain neutral surfaces will be common, and repre- 
sent combinations of the form described previously. No 
further examples are presented here. 

Computer  solutions have indicated that all harmonics 
A and D are interrelated, as are all in the B/C group, by 
these restrictions. Generally isochoric transformations 
can be made up by using all of the A and D harmonics, or 
all the B and C, or all harmonics together. The strong 
interrelationship explains the absence of general 
isochorism in the combinations examined in previous 
sections. It means that, for a specification of one of the 
pure shear components and one of the harmonics from 
each group, all terms become specified if isochorism is to 
be general. 

For given all and a22 and a single given harmonic from 
one of the interrelated groups, all but one of the terms in 
the transformation using that group are uniquely 
defined. This term is defined as the positive or negative 
value of a square root. 

A solution using the A/D group is illustrated in Fig. 
19, the transformation being defined by A l l  1 = D l l l  = 
1.125, A2n = Dzn = 0.5, all = 1.5 and a= = 0.6667. 
Despite the fact that only 'pinch-and-swell' harmonics 
are used, the lines of X 1 = constant could still represent 
layering traces in similar folds. These harmonic restric- 
tions thus force the mixed harmonics into combinations 
in which they simulate 'fold' development with extreme 
layer-parallel angular shear. 

Two solutions using all harmonics are illustrated in 
Fig. 20. Figure 20(a) uses unitary pure shear compon- 
ents, and has harmonic values of All1 = Bu~ = C1H = 
D211 = 1, A211 = B211 = {[7211 = D l l  I = - 1 .  In Fig. 20(b) 
there is an overall pure shear given by a~l = 1.25 and 
a22 = 0.8, and harmonic terms of lower amplitude are 
used. 

The general pattern in all of these examples is similar, 
isochorism at each point being maintained by the balanc- 
ing of the pinch and swell of co-existing harmonics to 
give 'similar fold' surface relationships with strong 'inter- 
layer shear'.  Increasing the ratios of individual har- 
monics within groups increases the asymmetry of the 
structures, as is evident in Fig. 20. 
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(b) 

Fig.  20. G e n e r a l l y  i s o c h o r i c  t r a n s f o r m a t i o n s  invo lv ing  all f i r s t - o r d e r  

m i x e d  h a r m o n i c s :  (a)  A l l  1 = Bi l l  = C i l l  = DeN = 1, A211 = Bzll = 
C211 = DI11 = - 1 ;  al l  = a22 = 1; (b)  A l l l  = B m  = Di l l  = 0 . 5 ;  
A211 = B2u = D2u = 0 .32 ;  Cll l  = - -0 .5 ;  C2tl = - 0 . 3 2 ;  a u ---- 1.25 
a n d  a22 = 0 .8 .  B o t h  t r a n s f o r m a t i o n s  a re  p l o t t e d  in t he  r a n g e  

( 0 ~ X  t ~ < 2 ~ ' , 0 ~ < X  2~<47r ) .  

Cosine curve with all mixed harmonics 

It is paradoxical that the quest for mixed harmonics to 
produce pinch and swell with general isochorism and 
local shear strain neutrality should result in fold-like 
patterns. It makes reintroduction of the cosine curve 
appear of questionable value. 

Writing out the relationships for isochorism and shear 
strain neutrality indicates that this is indeed so. The 
mixed harmonic restrictions are still present, with the 
A10a appearing in new single term equations only. This 
makes the system insoluble in a general sense. It is not 
possible to achieve general isochorism in a transforma- 
tion in which a basic form given by a first-order geometric 
function curve is to receive additional layer-parallel 
heterogeneous strain through first-order mixed har- 
monics only. 

To produce variations as shown in Fig. 11, which was 
derived by experiment using interactive graphics, other 
harmonics, including ones describing second-order 
axially inhomogeneous pure shear, are used. The restric- 
tions to a number of such combinations have been 
examined, but no generally isochoric solutions have 
emerged. 

S U M M A R Y  

A plane strain coordinate transformation based on a 

multiple harmonic series has been presented, and shown 
to be capable of modelling a wide range of deformation 
patterns although the patterns with isochorism at each 
point appear to be restricted. Its effects can be split up 
into homogeneous components, termed aiK, and 
harmonic terms Alton, Bimn, Cim,, and Dim, applied simul- 
taneously. 

The deformation expressed in the coordinate transfor- 
mations is capable of representing all styles of folding 
independently of the mechanism of folding and can 
represent a wide range of other inhomogeneous defor- 
mations as well. 

Of the various terms in the deformation, 

aiK terms represent the components of a homogene- 
ous deformation, so that by varying these quanti- 
ties, various amounts of homogeneous shorten- 
ing, extension or shearing may be introduced. 

mio o terms represent a homogeneous translation of 
the deformed body. 

Bimo, Cion, Dio., D~mo terms are redundant since they 
are associated with terms involving sin (0). 

A~o. and B~on terms, when non-zero, represent 
inhomogeneous shear along X 1 whereas 

B2m 0 and Czmo terms, when non-zero, represent 
inhomogeneous shear along X 2. 

Other terms can lead to an inhomogeneous pure 
shear. Thus with A20. and B2o n n o n  zero and Blmo, Clm 0 
zero, the relative distance between X ~= constant 
planes is altered in an inhomogeneous manner. 

A~m ~ terms with i, m and n non-zero simulate a 
'pinch-and-swell' type of deformation. 

An alternative way of viewing the terms in the trans- 
formation is to consider their significance in simulating a 
fold shape where X I is parallel to the axial plane trace 
and X 2 is parallel to the trace of initial layering: 

A ~0. and B~0. terms represent the gross fold outline. 
A2o n and B2o n terms represent inhomogeneous pure 

shear along X 2. 
Axm0 and Ctm0 terms represent axial plane extension 

variable from layer to layer but not along layers. 
Alton, Blmn, Clm n and Dim n represent inhomogene- 

ous across-layer extension including pinch and 
swell. 

A2,,,,,, Bz,,,,,, C2mn, D2,,,,, represent generally variable 
extension along layer traces, i.e. they contain 
most of the 'buckling' inhomogeneity. 

a~K terms represent a homogeneous strain applied 
to the whole fold. 

In this paper a number of constraints are developed 
for the transformation including a condition for constant 
volume (isochoric) deformation, and zero shear strain 
for lines initially normal to the distorted layer. 

The nature of the multiple harmonic coordinate trans- 
formation precludes generally isochoric solutions from 
folding with inhomogeneous layer-parallel shear strain. 
A solution to a perfectly isochoric buckling may have to 
resort to solutions based on multiple angle formulae 
going to high orders of harmonics. 
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Simple numerical relationships governing the selec- 
tion of harmonics can be found such that isochorism and 
shear strain neutrality occur along selected surfaces of a 
transformation. A number of examples of these have 
been presented as results of semi-automatically executed 
derivations. The basis of these derivations has been a 
logical rather than a numerical program. 
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